28 research outputs found

    COVID-19 and 5G conspiracy theories: long term observation of a digital wildfire

    Get PDF
    The COVID-19 pandemic has severely affected the lives of people worldwide, and consequently, it has dominated world news since March 2020. Thus, it is no surprise that it has also been the topic of a massive amount of misinformation, which was most likely amplified by the fact that many details about the virus were not known at the start of the pandemic. While a large amount of this misinformation was harmless, some narratives spread quickly and had a dramatic real-world effect. Such events are called digital wildfires. In this paper we study a specific digital wildfire: the idea that the COVID-19 outbreak is somehow connected to the introduction of 5G wireless technology, which caused real-world harm in April 2020 and beyond. By analyzing early social media contents we investigate the origin of this digital wildfire and the developments that lead to its wide spread. We show how the initial idea was derived from existing opposition to wireless networks, how videos rather than tweets played a crucial role in its propagation, and how commercial interests can partially explain the wide distribution of this particular piece of misinformation. We then illustrate how the initial events in the UK were echoed several months later in different countries around the world.publishedVersio

    Don't Trust Your Eyes: Image Manipulation in the Age of DeepFakes

    Get PDF
    We review the phenomenon of deepfakes, a novel technology enabling inexpensive manipulation of video material through the use of artificial intelligence, in the context of today’s wider discussion on fake news. We discuss the foundation as well as recent developments of the technology, as well as the differences from earlier manipulation techniques and investigate technical countermeasures. While the threat of deepfake videos with substantial political impact has been widely discussed in recent years, so far, the political impact of the technology has been limited. We investigate reasons for this and extrapolate the types of deepfake videos we are likely to see in the future.publishedVersio

    Automatic detection of passable roads after floods in remote sensed and social media data

    Get PDF
    This paper addresses the problem of floods classification and floods aftermath detection based on both social media and satellite imagery. Automatic detection of disasters such as floods is still a very challenging task. The focus lies on identifying passable routes or roads during floods. Two novel solutions are presented, which were developed for two corresponding tasks at the MediaEval 2018 benchmarking challenge. The tasks are (i) identification of images providing evidence for road passability and (ii) differentiation and detection of passable and non-passable roads in images from two complementary sources of information. For the first challenge, we mainly rely on object and scene-level features extracted through multiple deep models pre-trained on the ImageNet and Places datasets. The object and scene-level features are then combined using early, late and double fusion techniques. To identify whether or not it is possible for a vehicle to pass a road in satellite images, we rely on Convolutional Neural Networks and a transfer learning-based classification approach. The evaluation of the proposed methods is carried out on the large-scale datasets provided for the benchmark competition. The results demonstrate significant improvement in the performance over the recent state-of-art approaches

    Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge

    Get PDF
    Colonoscopy is the gold standard for colon cancer screening though still some polyps are missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection subchallenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks (CNNs) are the state of the art. Nevertheless it is also demonstrated that combining different methodologies can lead to an improved overall performance

    DeepEIR: A Holistic Medical Multimedia System for Gastrointestinal Tract Disease Detection and Localization

    No full text
    We developed a complete holistic medical multimedia system for gastrointestinal (GI) tract disease detection and localization based on Computer Vision (CV) and Artificial Intelligence (AI). Our DeepEIR system is designed as flexible, generalizable, adaptable, efficient and accurate solution that supports various endoscopic devices including wireless capsular endoscopes, and it can be easily expanded with new diseases and objects. The system can both process a vast amount of data off-line and perform real-time support during live medical procedures. We also contributed to the problem of medical data availability for research community. We collected, annotated, and published several datasets and data annotation tools as open source. Our datasets (Kvasir, Nerthus and Medico) immediately got a lot of attention and are used by many research teams. This work connects Multimedia and Medicine and uses Image Analysis, Machine Learning (ML), Convolutional Neural Networks (CNN), Deep Learning (DL) and Generative Adversarial Networks (GAN) to support doctors in their daily routine, reduce lesion overlooking and, therefore, have a societal impact by helping people to survive lethal diseases
    corecore